The real world meets the technical drawing curriculum
by Frank Saccente
In light of the difficulty faced by educators when trying to stress upon students the importance of academic curricula, an approach employed by a Technical Drawing program reveals some innovative methods for accomplishing this objective.
The approach has been employed in the Technical Drawing program at Roselle Park High School in New Jersey for the past five years and encompasses the traditional drafting curriculum, but with a very different twist. The program couples the normally covered areas of a drafting curriculum with exposure to "real life," out-of-school examples of its application. Here's how it's done.
By skimming the table of contents of any drafting text and then exercising some creativity and imagination, numerous opportunities can be found for bringing the curriculum to life in a fresh and exciting way and integrating it with other academic disciplines. Examples of such an approach follow below.
* Aerodynamics and CAD
In a unit entitled The Physics of Flight, Roselle Park High's drafting students are first familiarized with the principles and concepts responsible for creating lift in an airfoil or airplane wing. For those who don't hold a degree m aeronautical engineering, this phenomenon is explained through such physics principles as the Venturi Effect, Bernoulli's Law and Newton's Third Law of Motion. After the initial introduction, students then conduct library research to gather information on the above principles and are asked to define some common aeronautical engineering terminology.
Next, a model-making exercise is provided in which students apply the above concepts and terms to generate fiat, stretchout patterns for various types of paper airplanes. Students use the AutoCAD computer-aided drafting program to generate their paper airplane patterns and to add graphics and personalized text before outputting the pattern to a Houston Instruments' DMP 52 plotter.
The accuracy obtainable through a high-end CAD system such as this enables students to not only develop accurate multi-scaled patterns, but also helps them make wing surface-area calculations. These area calculations are then used during "test flights" of their paper prototype airplanes in the corridor, to determine when and if an increase in wing surface area leads to an increase in flight stability and duration.
Now it's time for the real-life example. This was accomplished by arranging to have the United States Coast Guard land one of its search and rescue helicopters on the school's athletic field. During the course of a three-hour demo by the chopper's Coast Guard crew, students saw the real-world application of all of the principles and concepts that were covered in class.
The reinforcement and resultant retention of the subject matter by students through a dramatic field experience such as this is unparalleled in terms of a lasting impression. The chopper demo also provided an ideal venue to stress upon students the critically important role that math and science play not only in aircraft design, but also in every aspect of our day-to-day lives.
* Machine Drafting and Cars
Another area ripe for accessing a wealth of "real life" reinforcement is machine drafting. This topic is typically covered in high school drafting programs and usually requires students to generate drawings of what they perceive to be meaningless, abstract shapes. In spite of its importance, it's tough to get a high school adolescent excited about a roller bearing and pulley assembly. But there is a better way.
Instead, through a unit entitled Automotive Concepts and Technology, Roselle Park students switch from the mundane task of creating drawings of abstract machine parts to delving into the much more interesting and numerous concepts associated with automotive design, engineering and manufacturing. This area is easily laced with math and science principles and concepts. For example, the calculation of horsepower provides an excellent vehicle for exposing students to the mathematical formula used to determine the volume of a piston cylinder; similarly, the physics involved in converting reciprocal motion into rotary motion is easily understood when related to a crankshaft and piston assembly. Compression ratios are a natural discussion area, as is the chemistry behind varying volatility levels of different octane gasolines. In terms of generating ideas for integrating math and science into the drafting curriculum, the automotive world would have to be considered the "mother lode."
A hands-on experience is provided through an abstract machine exercise in which students once again employ AutoCAD in a number of different ways. First, when drawing cam patterns that will later be used to fabricate working prototype cams, the extremely complicated and ...
No comments:
Post a Comment